MAX materials and MXene materials are new two-dimensional materials which have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in numerous fields. This is an in depth guide to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements on the periodic table, collectively known as “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the key group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, the three elements of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is a new form of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, consisting of three elements with all the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X means the elements of C and N. The MXene material is a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAXenes and MXenes are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials make sure they are have an array of applications in structural materials. For instance, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be used in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often utilized in energy materials. As an example, K4(MP4)(P4) is one in the MAX materials with higher ionic conductivity and electrochemical activity, which can be used as a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The top of MXene materials can interact with more functional atoms and molecules, and a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually range from the etching management of the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics could be realized.
Properties of MXene materials
MXene materials are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are popular in energy storage and conversion. For instance, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials could also be used as catalysts in fuel cells to improve the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. As an example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. As an example, MXene materials bring gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Furthermore, MXene materials could also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, using the continuous progress of science and technology and also the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials is going to be further expanded and improved. These aspects could become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods can be further explored to understand a more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for additional optimization. Later on, the composition, structure, surface treatment as well as other facets of the material may be studied and improved comprehensive to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be popular in many fields, but you can still find many potential application areas to get explored. Down the road, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection and other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in numerous fields. Using the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.